(1) Sketch the right-hand sum for the graph below if the number of intervals is 4.

(2) Sketch the left-hand sum for the graph below if the number of intervals is 6.

(3) Set up (but don’t evaluate) the sums representing the requested area.
 (a) \(f(x) = \cos x \), region: \([-\pi/2, \pi/2]\), number of subintervals: 4, right-hand sum.

(b) \(f(x) = -x^3 + x^2 \), region: \([-1, 0]\), number of subintervals: 10, left-hand sum.
(4) Let \(f(x) = x^3 \).

(a) Given the interval \([0, 3]\) and the number of subintervals is 9, use the right-hand sum to approximate the area between \(f(x) \) and the \(x \)-axis.

(b) Given the interval \([3, 4]\) and the number of subintervals is 3, use the right-hand sum to approximate the area between \(f(x) \) and the \(x \)-axis.